The Viasat MD-1377 Joint internet Protocol Modem (JIPM) system from Viasat combines flexible satellite networking with information assurance capabilities to deliver secure, high-speed IP communications to the military and government agencies. Featuring a DVB standards-based waveform with powerful encryption and government-specified transmission security (TRANSEC), JIPM is the Department of Defense (DoD) satellite modem standard for connecting all US forces. This system powers an IP networking backbone across the battlespace, enabling today’s information-hungry warfighters to efficiently share voice, video, and data communications over military and commercial satellites (including Ka-band) using adaptive and variable coded modulation techniques.

JIPM connects more users in more networks—and does so more efficiently—thanks to flexible networking and bandwidth optimization features. The 1U remote modem (RM) and highly scalable network control center (NCC) rely on advanced forward error correction (FEC), modulation, and coding schemes to make better use of bandwidth in star or multi-star topologies. The JIPM system even supports an upgrade for single satellite hop mesh connections between remote modems. So you can change your network architecture to suit your application, without changing your modem. One modem, multiple networks, for all US forces.

With an embedded FIPS 140-2, Level 2, AES-256 TRANSEC module, the system ensures secure connectivity and protects sensitive communications. Using transportable and mobile SATCOM platforms equipped with JIPM remote modems, deployed warfighters can access core Global Information Grid (GIG) services including SIPRNET, NIPRNET, VTC, DSN, DRSN and JWICS through JIPM NCCs.

Share information across forces and across the battlespace with IP satellite networking powered by JIPM. Arm yourself with this secure, high-speed modem to communicate across the GIG and directly between deployed forces to execute joint missions more effectively.

CONNECTING JOINT FORCES ACROSS THE BATTLESPACE

- **Built for High-Bandwidth IP Applications**
 - Streaming video
 - Video Teleconference (VTC)
 - SIPRNET, NIPRNET, GIG access
 - Voice over IP (VoIP)
- **One Platform for Multiple Network Topologies**
 - Star, Multi-Star (Hub/Spoke; One-to-Many) with Dual DVB-S2 Receivers
 - Upgradable to Mesh (Single Satellite Hop; Many-to-Many)
- **Flexible Connections and Bandwidth Efficiency**
 - Dual integrated digital video broadcast—second generation (DVB-S2) receiver for high-speed downloading from the GIG
 - 1 to 50 Mpsps DVB-S2 ACM/VCM/CCM forward link (FL)
 - 128 to 2048 ksps DVB-RCS Return Link (RL)
 - Return Link power control via Dynamic Link Adaptation (DLA)
 - Supports QPSK, 8PSK (FL/RL) and 16APSK (FL) modulations
 - Embedded QoS and TCP/IP acceleration (Performance Enhancing Proxy)
- **Embedded Information Assurance**
 - AES-256 encryption-based Transmission Security (TRANSEC)
 - Automatic over-the-air authentication, re-keying, and zeroization
 - FIPS 140-2, Level 2 certification
 - Full DIACAP accreditation
 - NCC and RM are compliant with all applicable information assurance and STIG requirements
- **Adapts as Your Network Grows**
 - Compatible with existing IPv4 networks and IPv6 standards
 - Software-reprogrammable RM and NCC elements
 - Software-upgradable to higher RL rates
 - Hardware/Software-upgradable to Mesh operation
 - SNMP at NCC allows remote monitoring by higher-level management systems
SPECIFICATIONS

NETWORK
Independent Networks 10 per JIPM NCC
Forward Link Carriers 1 per network
Remote Modems ≥1000 per network; ≥300 2-way RMs per network
Return Link Carriers Up to 32 per network
Multi-Satellite Operation Each network can operate on a separate satellite or transponder, software upgradable to up to 64 carriers per network
NCC Network Interface Gigabit Ethernet, 1 data port per network, 4 control ports per NCC
Frequency Hopping Per SatLabs recommendation
Hop Rate Up to 6000 hops/s
Synchronization Network Timing Reference provided by NCC
Forward Transmission 1 to 50 Msps, independent on each DVB-S2 receiver Rate (NCC to RM)
Return Transmission 128 Kbps to 2.048 Msps (extensible to 8.192 Msps) Rate (RM to NCC)
Receive Only Operation Yes (with or without TRANSEC enabled)

TRANSMISSION SECURITY
Encryption AES-256 with additional TRANSEC features

PLANNED CERTIFICATIONS*
MILSATCOM DSCS, GBS, WGS compliance
DIACAP DoD 8510.01 compliance
NIST NIST compliance with FIPS 140-2 (extensible to 140-3)

DVB-S2/RCS
Forward Link DVB-S2 per ETSI EN 302 307 with ACM/VCM/CCM
Return Link DVB-RCS per ETSI EN 301 790

REDUNDANCY
NCC Redundancy 1:1 for core components
Forward Link Redundancy 1:4
Return Link Redundancy 1:4

IP
IP Packet Forwarding Transparent IPv4 and IPv6 packet forwarding for unicast and multicast
IP Packet Routing IGMP v1, v2, v3; MLD v1, v2; RIPv1, v2, ng
IP Encapsulation MPE, MPEG and ATM encapsulation
IPv6 Per DoD IPv6 Special Profiles for IPv6
IP QoS Compatible Products Mandatory requirements
TCP/IP Acceleration Configurable for FL and RL; applies to unencrypted (SBU) traffic flows concurrent with Type 1 encrypted traffic flows

SATELLITE INTERFACE
IF Interface 950 to 2050 MHz
Supported RF Interfaces 3 to 32 GHz
Spectral Confinement α = 0.20 or 0.35 (FL-selectable), 0.35 (RL)
Doppler Performance Maintains specified performance under all of the satellite Doppler conditions corresponding to up to seven (7) degrees of orbital inclination
BUC, LNB Support 10 MHz on/off, LNB power (13, 18 VDC, off), BUC power (24 VDC, external, off), independently selectable

MODULATION AND CODING
Forward Links DVB-S2 ACM/VCM/CCM LDPC FEC, QPSK/8PSK/16APSK
Return Links DVB-RCS Turbo FEC, QPSK/8PSK
Mesh Links (Upgrade) DVB-RCS Turbo FEC, QPSK/8PSK

HARDWARE
RM Packaging 19 in. rack mountable
RM Cooling External forced air cooling not required
System Availability 99.99%
AC Prime Power 100 to 240 VAC, 47 to 63 Hz
NCC High Temperature
 » Operating 38º C; 100º F
 » Non-Operating 60º C; 140º F
NCC Low Temperature
 » Operating 4.4º C; 40º F
 » Non-Operating -40º C; -40º F
RM High Temperature
 » Operating 50º C; 122º F
 » Non-Operating 70º C; 158º F
RM Low Temperature
 » Operating 0º C; 32º F
 » Non-Operating -40º C; -40º F
Humidity
 » Operating 95%, Non-Condensing
 » Transportation and Storage 100%, Non-Condensing
Management Interface Web browser for NCC and RM (local or remote access); SNMPv3 on NCC allows local or remote monitor from external NMS