The US Government selected the Viasat MD-1366 Enhanced Bandwidth Efficient Modem (EBEM) to set the new standard (MIL-STD-188-165B/STANAG 4486 ed.3) for high-speed, high-performance, flexibility, and compatibility in a Single Channel Per Carrier (SCPC) modem. This modem uses the latest advanced modulation and coding technology, while also providing backwards interoperability with the majority of existing SCPC modems. It supports a large range of user data rates, from 64 Kbps up to 155 Mbps, and provides power and bandwidth efficiency with 16-ary modulation and Turbo coding. In addition to the requirements defined in MIL-STD-188-165B/STANAG 4486 ed.3, the MD-1366 also supports simplex and point-to-multipoint TRANSEC and low-latency antenna handover.

The Viasat MD-1366 provides a selectable adaptive coding and modulation mode that automatically adjusts modulation and code rates (while maintaining the symbol rate) matched to channel conditions—preserving link margin while combating rain-fades or other channel impairments. The optional Ethernet Service Expansion Module (ESEM) is a plug-in module providing an Ethernet data interface for the modem, allowing the modem to support existing and future Ethernet based protocols: IPv4, IPv6, MPLS and non-IP data flows. When in Turbo-coded mode, the ESEM enables a new logical data channel, which carries encapsulated Ethernet framed packets over the satellite link. The ESEM packet stream can be used in conjunction with existing fixed serial rate data streams.

The internal AES encryption algorithms can be used in lieu of external TRANSEC devices in government installations. The Viasat MD-1366 provides encryption intended to protect sensitive, but unclassified data. Featuring Federal Information Processing Standard (FIPS) 197 Advanced Encryption Standard (AES) with 256-bit cipher key, the modem is NIST certified at Security Level 2 as described in FIPS PUB 140-2. AES-256 bulk encryption (TRANSEC) of all over-the-air data channels for Turbo-coded modes includes: serial user data, Ethernet user data, overhead data, and embedded data channels. Encryption and decryption operate over the entire data rate range with minimal additional delay. Encryption is disabled for backward compatibility with legacy waveforms: OM-73, MIL-STD-165A, IESS-308, 309, and 310. Encryption can be operated in full-duplex, simplex, and point-to-multipoint configurations.

The Viasat EBEM comes in a standard strategic configuration (MD-1366/U) and a tactical configuration (MD-1366A/U) that is housed in a ruggedized chassis to support antenna handover mode when dual-antennas are required.

MD-1366 EBEM AT-A-GLANCE

Highlights
- Available in Strategic MD-1366/U or Tactical MD-1366A/U configurations
- The only fully-compliant MIL-STD-188-165B/STANAG 4486 ed.3 modem
- NIST-certified (FIPS 140-2) AES-256 TRANSEC encryption
- Industry-leading advanced modulation and Turbo coding
- Flexibility, interoperability, and bandwidth efficiency in a 1U-high, 19 in. rack mount
- Data rates from 64 Kbps to 155 Mbps (Symbol rates from 32 Kbps to 60 Mbps)
- BPSK, QPSK, OQPSK, 8-PSK, 16-APSK
- Versatile IF (selectable 70 MHz, 140 MHz, L-band)
- IESS-310 Trellis Coded Modulation (TCM), Viterbi, and Reed-Solomon decoders
- Information Throughput Adaptation (165B STANAG 4486 ed.3 waveforms) chooses the optimal modulation and code rate for changing conditions
- Automatic Transmit Power Control algorithm and Transmit Power Inhibit capability (165B STANAG 4486 ed.3 waveforms)
- Built-in test features
- Control and Monitoring: Front panel, SNMP v1 and v3, 32- and 64-bit Windows® XP and 7 GUI, or command line interface (Ethernet or serial)

Unique Features
- Selectable adaptive coding and modulation mode
- AES-256 bulk encryption of all over-the-air data (165B/STANAG 4486 ed.3 waveforms) eliminates the need for a separate inline network encryptor
- Automated session key generation and distribution, seamless session key rollover and self-synchronization
- Seamless and low-delay antenna handover capabilities in tactical configuration
- Performance in Ka-band shipboard Doppler environments
- Monitor Status of Distant/Remote EBEM modem
- Adaptive Equalization (16-APSK modulation)

IP-Capable with Ethernet Data Interface (Optional)
- ESEM provides over-the-air packet data channel (165B/STANAG 4486 ed.3 waveforms)
- Single Gigabit Ethernet Interface (10/100/1000BASE-T)
- Supports PPPoE with credit extension (RFC 4938)
- Supports Emission Control (EMCON) operation

Interoperability
- User Data Interfaces: TIA/EIA-530, NASA 87-20B, TIA/EIA-612/613(HSSI)
- Overhead Data Interfaces: TIA/EIA-422A

The new standard in FDMA throughput and affordability, plus full backward compatibility throughputs, flexible, and compatible, setting the new standard in FDMA throughputs, flexible, and compatible.
Viasat MD-1366 Enhanced Bandwidth Efficient Modem

SPECIFICATIONS

INTERMEDIATE FREQUENCIES

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 MHz IF Range</td>
<td>52 to 88 MHz in 1-kHz steps</td>
</tr>
<tr>
<td>140 MHz IF Range</td>
<td>104 to 176 MHz in 1-kHz steps</td>
</tr>
<tr>
<td>L-band IF Range</td>
<td>950 to 2000 MHz in 1-kHz steps</td>
</tr>
</tbody>
</table>

REFERENCES

External Modem Reference Input 1, 5, 10 MHz or Internal

MODULATIONS, DATA RATES & SCRAMBLING

- Binary Phase Shift Keying (BPSK)\(^1,2\): 64 Kbps to >60 Mbps
- Quadrature Phase Shift Keying (QPSK)\(^1,2\): 64 Kbps to >120 Mbps
- Offset Quadrature Phase Shift Keying (OQPSK)\(^1,2\): 64 Kbps to >120 Mbps
- 8-ary Phase Shift Keying (8-PSK)\(^1,2\): 256 Kbps to >155 Mbps
- 16-ary Amplitude Phase Shift Keying (16-APSK)\(^2\): 256 Kbps to >155 Mbps
- Symbol Rate: 32 Kbps to >60 Mbps
- Scrambling: Sync, Asynchronous or None
- Differential Encoding/Decoding: MIL-STD-188-165A or None

FEC CODING

- 16/5B/STANAG 4486 (Turbo) FEC Rates\(^2\): 1/2, 2/3, 3/4, 7/8, 19/20
- Convolutional Encoding & Viterbi Decoding (CEVD) Rates\(^1\): 1/2, 3/4, 7/8
- Trellis Coded Modulation (TCM) Rates\(^1\): 3/4, 7/8
- CEVD and Reed-Solomon (RS) Concatenated\(^2\): CEVD inner with RS outer
- TCM and Reed-Solomon (RS) Concatenated\(^2,3\): TCM inner with RS outer
- Reed-Solomon Outer Rates\(^2\): RS(126, 112), RS(225, 205), RS(219, 201), RS(194, 178), RS(208, 192)
- Uncoded\(^1\): 1/1

MODULATION

- IF Output Power: +10 dBm to 0 dBm, in 0.1 dBm steps
- Output Connectors: TNC for 70/140 MHz, N-Type for L-band, 50 Ohms
- Carrier Mode: Modulated or CW
- Clock Mode: Internal, TX Terrestrial, or Data Source Sync

DEMODULATION

- IF Input Power: +10 dBm to -82 dBm (typical)
- Input Connectors: TNC for 70/140 MHz, N-Type for L-band, 50 Ohms
- Acquisition Range: -30,000 to +30,000 Hz
- Buffer Clock: Derived from Modem Reference (INT, EXT), RX SAT or TX Terrestrial
- Buffer Size: 0 to 2,000,000 bytes, selectable

BUILT-IN TESTS

- Built-In Tests: Programmable BIT test modes, alarm, fault, and status reporting
- Loopback, Baseband Logic, BERT pattern generation including Mark, Space, 1, 1, 1, 1, 2047, 2, 21E(15-1), and 2(23-1), block and bit error counting and BER data output
- Eb/No: Internal AWGN generation, 0 to 20 dB Eb/No over -30 to -5 dBm output power
- Alarm Interface: Reported via DB-9 (F), FORM C relay contacts for equipment alarm events

ANTENNA HANDOVER (TACTICAL CONFIGURATION)

- 0 to 110 ms Ship-to-Shore Interruptions
- 0 to 1 ms Shore-to-Ship Interruptions
- Supports BPSK, QPSK, and 8-PSK Turbo-like Coded Waveforms
- 64 Kbps to 50 Mbps in both Ship-to-Shore and Shore-to-Ship Antenna Handover modes
- Seamless Antenna Handover Mode for error-free handovers
- Low-Delay Antenna Handover Mode for low-latency handovers

HARDWARE

- Universal Power Input: 100 to 240 VAC, 50/60 Hz, 1.0 to 0.5 A
- Mounting: 1U-high 19 in. rack
- Dimensions (W x H x D): 19 x 1.75 x 17 in.
- Weight: <10 lb (Strategic), <12 lb (Tactical)
- Operating Temperature: 0° to >50° C up to 8,000 ft
- Storage Temperature: -40° to >60° C
- Humidity: <30% operational, <70%, non-condensing
- Shock: MIL-S-901D, Class I, Grade A, Type B (Tactical)
- Safety Compliance: CB Scheme, CE Marking Low Voltage Directive (LVD), NRTL Marking (USA, Canada), IEC/EN/UL/CSA 60950-1 2nd Edition
- Electromagnetic Compatibility (EMC): FCC Class B, CE Marking EMC Directive, CISPR 22 (EN 55022), CISPR 24 (EN 55024)
- Environmental Compliance: REACH, WEEE
- Mean Time Between Failure: 40,000 hr

16-APSK TURBO EB/NO VS.BER PERFORMANCE

<table>
<thead>
<tr>
<th>BER</th>
<th>1/2</th>
<th>2/3</th>
<th>3/4</th>
<th>7/8</th>
<th>19/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-6</td>
<td>4.00</td>
<td>5.75</td>
<td>6.50</td>
<td>8.00</td>
<td>9.60</td>
</tr>
<tr>
<td>10^-8</td>
<td>4.15</td>
<td>5.85</td>
<td>6.60</td>
<td>8.10</td>
<td>9.85</td>
</tr>
</tbody>
</table>

8-PSK TURBO EB/NO VS. BER PERFORMANCE

<table>
<thead>
<tr>
<th>BER</th>
<th>1/2</th>
<th>2/3</th>
<th>3/4</th>
<th>7/8</th>
<th>19/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-6</td>
<td>2.90</td>
<td>4.45</td>
<td>5.30</td>
<td>6.65</td>
<td>8.35</td>
</tr>
<tr>
<td>10^-8</td>
<td>3.05</td>
<td>4.60</td>
<td>5.45</td>
<td>6.75</td>
<td>8.45</td>
</tr>
</tbody>
</table>

QPSK/QOQPSK TURBO EB/NO VS. BER PERFORMANCE

<table>
<thead>
<tr>
<th>BER</th>
<th>1/2</th>
<th>2/3</th>
<th>3/4</th>
<th>7/8</th>
<th>19/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-6</td>
<td>1.50</td>
<td>2.50</td>
<td>2.95</td>
<td>3.85</td>
<td>5.50</td>
</tr>
<tr>
<td>10^-8</td>
<td>1.55</td>
<td>2.60</td>
<td>3.05</td>
<td>3.90</td>
<td>5.65</td>
</tr>
</tbody>
</table>

BPSK TURBO EB/NO VS. BER PERFORMANCE

<table>
<thead>
<tr>
<th>BER</th>
<th>1/2</th>
<th>2/3</th>
<th>3/4</th>
<th>7/8</th>
<th>19/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-6</td>
<td>1.40</td>
<td>2.15</td>
<td>2.75</td>
<td>3.85</td>
<td>5.20</td>
</tr>
<tr>
<td>10^-8</td>
<td>1.45</td>
<td>2.25</td>
<td>2.85</td>
<td>3.95</td>
<td>5.35</td>
</tr>
</tbody>
</table>

16-APSK TCM EB/NO VS. BER PERFORMANCE

<table>
<thead>
<tr>
<th>BER</th>
<th>CEVD 1/2</th>
<th>CEVD 3/4</th>
<th>CEVD 7/8</th>
<th>CEVD w/ RS 1/2</th>
<th>CEVD w/ RS 3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-6</td>
<td>5.10</td>
<td>6.10</td>
<td>6.95</td>
<td>2.70</td>
<td>3.65</td>
</tr>
<tr>
<td>10^-8</td>
<td>6.30</td>
<td>6.25</td>
<td>8.20</td>
<td>2.90</td>
<td>3.85</td>
</tr>
</tbody>
</table>

8-PSK TCM EB/NO VS. BER PERFORMANCE

<table>
<thead>
<tr>
<th>BER</th>
<th>TCM R = 2/3</th>
<th>TCM R = 2/3 w/ RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-6</td>
<td>8.05</td>
<td>4.85</td>
</tr>
<tr>
<td>10^-8</td>
<td>9.45</td>
<td>5.10</td>
</tr>
</tbody>
</table>

NOTES

1. In accordance with MIL-STD-188-165A, IESS-308, IESS-309 and IESS-310
2. In accordance with MIL-STD-188-165B and STANAG 4486 ed.3
3. MIL-STD-188-165B/STANAG 4486; Turbo Modes at data rates >4 Mbps; Worst case performance 0.6 to 1.6 dB higher.
4. MIL-STD-188-165A and IESS-308, IESS-309, IESS-310 modes; Worst-case performance 0.8 to 2.1 dB higher.
5. MIL-STD-188-165B/STANAG 4486 ed; 16-APSK/TCM modes; Worst-case performance 0.9 to 5.8 dB higher.

CONTACT

SALES
TEL 888 842 7281 (US Toll Free) FAX +1 760 683 6815 EMAIL gov.satcom@viasat.com WEB www.viasat.com

UNITED STATES
Carlsbad, CA & Washington, DC TEL +1 760 476 4755 FAX +1 760 683 6815 EMAIL insidesales@viasat.com

UNITED KINGDOM
Farnborough TEL +44 (O) 1252 248600 FAX +44 (O) 1252 248602 EMAIL sales@viasat.uk.com

AUSTRALIA
Canberra TEL +61 0 2 61639200 FAX +61 0 2 6162950 EMAIL gov.australia@viasat.com

Copyright © 2017 Viasat, Inc. All rights reserved. Viasat and the Viasat logo are registered trademarks of Viasat, Inc. All other product or company names mentioned are used for identification purposes only and may be trademarks of their respective owners. Specifications and product availability are subject to change without notice. 447188-170200-048