The ViaSat® VMT-1220 Helicopter-Mount Terminal (VMT-1220HE) provides two-way Ku-band broadband Satcom to helicopters while hovering or in flight. The VMT-1220HE series supports channel speeds of up to 5 Mbps to the helicopter and up to 325 kbps from the helicopter.

The VMT-1220HE features a small antenna and intelligent burst control technology that makes it the only commercially-available broadband system to overcome satellite signal blockage challenges associated with rotary-wing aircraft and deliver on-the-move communications at broadband speeds to helicopters. For the first time while in flight, the system enables the use of VoIP, Microsoft® Office applications, Command Post of the Future (CPOF), AFATDS/Effects Management Tool (AFATDS/EFT), All Source Analysis System (ASAS) Light, and Maneuver Control System (MCS).

Based on field-proven and certified ArcLight® technology, this small aperture terminal operates within FCC and ITU regulatory guidelines for adjacent satellite interference. The waveform is robust against intermittent blockage, allowing applications to run without interruption.

Part of the ViaSat ArcLight-based family of Mobile Satcom Systems, VMT-1220HE-equipped helicopter can seamlessly co-exist with ground and aircraft terminals on the ArcLight COTM network. ArcLight technology and equipment is the core of a Command and Control On-the- Move (C2OTM) satellite communication system that has been granted interoperability certification by the U.S. Department of Defense (DoD) Joint Interoperability Test Command (JITC). The VMT-1220HE has been fielded on U.S. Army Aviation Command & Control System (A2C2S) UH-60 Black Hawk helicopters.

ON-THE-MOVE BROADBAND

Intelligent Design for Helicopter Requirements
- Burst transmission control to overcome intermittent signal blockage by rotor blades
- Small aperture antenna
- Operates from aircraft or ground power

FCC/ITU-compliant On All Satellites
- Reliable Ku-band communication, overcoming adjacent satellite interference issues, enabled by spread spectrum waveform
- Increased network efficiency through mobile terminal burst transmission
- Optimized capacity enabled by closed loop power control and advanced network management

Secure Broadband IP Network Access
- Up to 5 Mbps effective forward channel rate (into the helicopter)
- Multi-return channel network
- Up to 325 kbps effective return channel burst rate (from the helicopter)
- Protected user IP traffic (HAIPE® Type 1 and/or FIPS 140-2) available

Bandwidth Efficiency
- Low-overhead shared IP network media access
- Reduced bandwidth cost with frequency reuse overlaying forward and return links simultaneously in same bandwidth

Service Options
- Shared hub service through ViaSat or a ViaSat partner (featuring fixed pricing per mobile/per month)
- Organic capability can be provided with purchased hub and usersupplied transponder bandwidth
This broadband IP access satisfies many customer needs — including command and control, emergency response, situational awareness, emergency restoral communications, web access, client-server applications, and voice, video and data communications — all while in flight.

The VMT-1220HE can be provided as Satcom-only, or as a complete terminal — just bring your user equipment: laptop computers, telephones, VoIP phones, or any IP-based equipment.

The complete terminal includes all necessary equipment for powering the unit from the helicopter’s electrical source and can also be operated from ground power.

Optionally, the terminal can provide HAIPE Type 1 and/or FIPS 140-2 certified encryption on all user traffic, a router/switch to supply 10/100BaseT Ethernet and RJ-11 phone line connections and a TCP/HTTP accelerator, to ensure that applications using TCP/IP achieve maximum speed over the satellite link. Other configurations can provide 802.11 or Type 1 secure 802.11 capabilities as well. The terminal is designed for simple operation on a helicopter and seamless plug-and-play connectivity to any public or private IP network, such as the public Internet, NIPRNET, SIPRNET, and/or CENTRIXS.

OPERATING FREQUENCIES

Transmit:

14.0 – 14.5 GHz

Receive:

10.95 – 12.75 GHz

MODULATION AND FEC

Forward Link Rx: (O)/QPSK spreading, BPSK data

Return Link Tx: GMSK spreading, BPSK data

Spread Factors: $4 \leq k \leq 150$ (Ret Tx); $1 \leq k \leq 23$ (FW Rx)

FEC: $R=1/3$ Turbo

Min. Req. Eb/No: 1.7 dB (FW Rx); 2.25 (Ret Tx) to achieve Quasi-Error Free (QEF)

Multiple Access: TDM (FW Rx); CRMA spread ALOHA (Ret Tx)

Freq. Reuse: Paired Carrier Multiple Access (PCMA)

BASEBAND INTERFACES

Console: RS-232 and Ethernet (via telnet)

OPTIONAL FEATURES

Data: 10/100BaseT Ethernet (802.11 or secure 802.11 optional)

Voice: RJ-11 (if optional router included)

Encryption: Type 1 HAIPE (KG-250) and/or FIPS 140-2 (128, 192 or 236 bit AES)

Acceleration: TCP/HTTP Performance Enhancing Proxy

Telephony: POTS (FXS, FXO optional) phone connections

Integrated Router: Cisco Systems router/switch

POWER

Input: 28 Volts DC, <800 W

ENVIRONMENTAL AND PHYSICAL

Operating Temp: -32° to 49° C (top-side equipment); 5° to 35° C (in-aircraft equipment)

Aircraft Ops: Hovering and in full flight

Weight: 25 lbs (in-aircraft equipment including ACU, modem); 80 lbs (top-side equipment including antenna, radome, RFEU, INU)

Size: Drawings available upon request (antenna); 1/2 ATR or 1U (modem); 1/2 ATR or 2U (ACU)